МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, КУЛЬТУРЫ И СПОРТА РА ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ УНИВЕРСИТЕТ

Составлена в соответствии с федеральными Государственными требованиями к структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) Проректор по науке
П.С. Аветисян

« 11 » ______ 20 14 г.

Институт: Биомедицины и Фармации

Кафедра: Общей и фармацевтической химии

Учебная программа подготовки аспиранта и соискателя ДИСЦИПЛИНА: 2.1.1 Биоорганическая химия

	ическая химия пие научной специальности
Программа одобрена на заседании кафедры	протокол № <i>8</i> от <i>31. О ⊆</i> 2024 г.
Утверждена Ученым Советом ИБМиФ	протокол № Дот <i>II. Об.</i> 2024 г.
Заведующий кафедрой Поотись	и.О.Ф, ученая степень, звание
Разработчик программы Подпирь	х.н., профессор, член корр. НАН РА Данагулян .Г И.О.Ф, ученая степень, звание

Ереван 2024

Общие положения

Настоящая рабочая программа обязательной дисциплины (модуля) «Биоорганическая химия» образовательной программы послевузовского профессионального образования (ООП ППО) ориентирована на аспирантов университета, уже прослушавших общие и специальные курсы поразличным разделам химии. Она разработана на основании законодательства Российской Федерации в системе послевузовского профессионального образования.

1. Цели изучения дисциплины (модуля)

Целью изучения дисциплины **«Биоорганическая химия»** являетсяподготовка преподавателей и научных работников высшей квалификации, имеющих навыки чтения лекции по данной тематике, проведения соответствующих научных исследований на современном уровне, полезных как для теории, так и для практики.

Обучение в аспирантуре подразумевает как практическую работу аспиранта (или соискателя) над темой своей диссертации, проведения экспериментальных исследований, направленных на получение новых соединений, очистки и получения их в чистом виде, выяснение схем и механизмов химических реакций в рамках собственного исследования, доказательства строения синтезированных или выделенных из природного сырья веществ. Второй, не менее важной и неотъемлемой частью работы аспиранта и соискателя является освоение теоретических основ органической химии и сопутствующих, сопредельных дисциплин, таких как теоретические основы химических реакций в органической химии, основы спектральных и других аналитических и физико-химических методов исследования строения молекул, изучение методов синтеза и свойств различных классов соединений, в зависимости от диссертационной темы собственных исследований (например, химия гетероциклических соединений, химия природных веществ, химия биологически активных соединений, химия элементорганических соединений и др.

Обучение в аспирантуре завершается сдачей экзамена (кандидатского минимума) по выбранной специальности и подготовкой и оформлением кандидатской диссертации на актуальную тему по указанной специальности.

Целью изучения дисциплины "Биоорганическая химия" является углубление знаний у аспирантов и будущих преподавателей и научных работников высшей квалификации в области методов синтеза, электронного строения, реакционной способности, биологической активности и значения различных классов органических соединений для сдачи кандидатского минимума (экзамена по специальности).

Задачи дисциплины заключаются в изучении:

- электронного и пространственного строения различных классов органических соединений алифатических, ароматических, гетероциклических;
- основных методов получения различных классов соединений;
- связи между строением и химическими свойствами соединений, влияния функциональных групп на реакционную способность веществ;
- теоретических основ органической химии, различных теорий и подходов в объяснении механизмов и направлений реаций органических веществ;
- методов исследования и доказательства строения органических соединений;
- биологической роли природных и биогенных органических соединений.

Место дисциплины в структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура)

Предмет «Биоорганическая химия» занимает свое - важное место в ряду других химических дисциплин и является связующим звеном между химическими и биологическими, а также медицинскими и фармацевтическими дисциплинами, поскольку большинство процессов протекающих в живой природе в своей природе основаны на превращениях между органическими веществами и включают процессы и закономерности, присущие органической химии.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

Аспирант должен

- знать 0:

- связи между строением (структурой) и химическими и физическими свойствами соединений, влиянии функциональных групп на реакционную способность веществ;
- электронном и пространственном строении различных классов органических соединений, включая π-избыточные, π-дефицитные и π-амфотерные;
- основных методах синтеза различных классов органических соединений, включая так называемые "именные реакции";
- биологической роли природных и биогенных органических соединений в жизнедеятельности живых организмов.

- уметь:

• классифицировать органические соединения по их строению и свойствам;

- пользоваться принятой номенклатурой органических веществ и самостоятельно их называть;
- объяснять протекание органических реакций и выбирать условия их осуществления;
- объяснять свойства органических соединений в соответствии с типом заместителей и их расположением в молекуле;
- пользоваться современными интернет-ресурсами и специальными программами в поиске публикаций по своей и смежным тематикам.
- интерпретировать спектральные данные и определять по ним строение синтезированных или выделенных веществ.

- Владеть:

- методами исследования и доказательства строения органических соединений;
- теоретическими основами органической химии, теорией, объясняющей протекание органических реакций в различных направлениях;
- навыками лабораторной работы и поиска методик по синтезу и анализу полученных результатов;знаниями по всему курсу органической химии;

умением объяснять химические свойства, проявляемые различными классами органических соединений.

- демонстрировать

- знания по всему курсу органической химии;
- умение объяснять химические свойства, проявляемые различными классами органических соединений.

3. Объем дисциплины (модуля) и количество учебных часов

Вид учебной работы	Кол-во зачетных единиц*/уч.часов
Аудиторные занятия	26/0.72
Лекции (минимальный объем теоретических знаний)	8
Семинар	
Практические занятия	18
Другие виды учебной работы (авторский курс, учитывающий результаты исследований научных школ Университета, в т.ч. региональных)	
Формы текущего контроля успеваемости аспирантов	
Внеаудиторные занятия:	10/0.28

Самостоятельная работа аспиранта	10
ИТОГО	36/1
Вид итогового контроля	Составляющая
	экзамена
	кандидатского
	минимума
	зачет

4. Содержание дисциплины (модуля)

4.1 Содержание лекционных занятий

№ п /п	Содержание	Кол-во уч.часов
		•
1	Принципы современного органического синтеза и установления строения органических соединений. Выбор оптимального пути синтеза. Основные пути построения углеродного скелета. Методы введения важнейших функциональных групп и пути перехода от одних функций к другим. Синтетические методы в органической химии и химические свойства соединений.	1
2	Алканы. Методы синтеза алканов. Реакции алканов. Циклоалканы.	0.5
3	Алкены. Методы синтеза алкенов. Реакции алкенов.	0.5
4	Алкины. Методы синтеза алкинов. Реакции алкинов.	0.5
5	Алкадиены. Методы синтеза 1,3-диенов. Реакции 1,3-диенов.	0.5
6	Спирты и простые эфиры. Методы синтеза одноатомных спиртов. Реакции одноатомных спиртов. Двухатомные спирты.	1
7	Методы синтеза простых эфиров. Реакции простых эфиров. Гидропероксиды. Краун-эфиры, их получение и применение в синтезе.Оксираны.	1
8	Альдегиды и кетоны. Методы получения альдегидов и кетонов. Реакции альдегидов и кетонов. α,β-Непредельные альдегиды и кетоны.	1
9	Карбоновые кислоты и их производные. Методы синтеза карбоновых кислот. Реакции карбоновых кислот. Методы получения производных карбоновых кислот. Реакции производных карбоновых кислот. Методы синтеза и свойства α,β-непредельных карбоновых кислот.	1
10	Арены. Синтетическое использование реакций электрофильного замещения в ароматическом ряду. Нитрование.Галогенирование. Сульфирование. Алкилированиеаренов по Фриделю-Крафтсу. Ацилированиеаренов.	1
	Всего:	8

4.2 Практические занятия

Νоπ	Солорующие	Кол-во
Noll	Содержание	уч.часов

/π		
1	Нуклеофильное замещение в алифатическом ряду. Нуклеофильное замещение в ароматическом ядре.	2
2	Электрофильное замещение у атома углерода.Замещение в ароматическом кольце. Генерирование электрофильных реагентов. Правила ориентации иих молекулярно-орбитальная интерпретация	2
3	Присоединение по кратным углерод-углеродным связям. Электрофильное присоединение.	2
4	Нуклеофильное присоединение к карбонильной группе. Альдегиды и кетоны.	2
5	Реакции 1,3-диенов. Галогенирование и гидрогалогенирование, 1,2- и 1,4-присоединение. Реакция Дильса—Альдерас алкенами и алкинами, ее типы: карбо-реакция, гетеро-реакция. Диены и диенофилы.	2
6	Карбоновые кислоты и их производные.	2
7	Классификация реакций ароматического электрофильного замещения. Влияниезаместителей в бензольном кольце на скорость и направление электрофильного замещения. Согласованная и несогласованная ориентация.	2
8	Методы получения аминов. Перегруппировки Гофмана и Курциуса.	2
9	Использование химических и физико-химических методов для установления структуры органических соединений. Спектроскопия ЯМР, масс- и хромато-масс-спектрометрия. Газожидкостная и жидкостная хроматография, Рентгеноструктурный анализ. Практические занятия.	2
	Всего:	18

Другие виды учебной работы

№ п/п	Содержание	Кол-во уч.часов
11/11	11	уч.часов
1	Контрольная работа	1
•••		
	Всего:	1

Самостоятельная работа аспиранта

<u>№</u>	Виды самостоятельной работы	Кол-во
Π/Π	виды самостоятельной расоты	уч.часов
1	Алканы, номенклатура, классификация. Нуклеофильное замещение в алифатическом ряду. Механизмы реакций.	1
2	Алкены и алкины. Методы синтеза, свойства. Реакции присоединения и элиминирования.	1
3	Алкадиены. Методы синтеза и свойства 1,3-диенов,1,2- и 1,4- присоединение. Реакция Дильса—Альдера. Диены и диенофилы,[4+2]-циклоприсоединение.	1
4	Подготовка по лекциям посвященным спиртам и простым эфирам. Методы синтеза, свойства.	1
5	Альдегиды и кетоны. α, β -Непредельные альдегиды и кетоны — получение и свойства.	1

6	Карбоновые кислоты и их производные. Карбоновые кислоты, содержащие иные функциональные группы. β-Дикарбонильные соединения, таутомерия.	1
7	Арены. Электрофильное замещение в ароматическом ряду. Нуклеофильное замещение в ароматических и гетероароматических системах.	1
8	Механизмы реакций нуклеофильного замещения в ароматическом ряду.	1
9	Нитро-, нитрозо-, амино- соединения.	1
10	Спектральные методы в органической химии.	1
	Всего:	10

4 Перечень контрольных мероприятий и вопросы к экзаменам

кандидатского минимума

Итоговая аттестация аспиранта включает сдачу кандидатских экзаменов и представление диссертации в Диссертационный совет. Порядок проведения кандидатских экзаменов включает в кандидатский экзамен по научной специальности дополнительные разделы, обусловленные спецификой научной специальности. Билеты кандидатского экзамена по специальной дисциплине в соответствии с темой диссертации на соискание ученой степени кандидата наук должны охватывать разделы Специальной дисциплины отрасли науки и научной специальности (ОД.А.) и Дисциплины научной специальности по выбору аспиранта (ОДН.А.).

Перечень вопросов к экзаменам кандидатского минимума:

- 1. Современные электронные представления о природе химической связи.
- 2. Типы связей в органической химии. Гибридизация атомов углерода и азота.
- 3. Электронные эффекты. Электроотрицательность атомов и групп.
- 4. Основные положения квантовой химии. Атомные и молекулярные орбитали (АО и МО).
- 5. Понятие о резонансе (сопряжении) в классической и квантовой химии. Метод граничных орбиталей.
- 6. Концепция ароматичности. Правило Хюккеля. Антиароматичность.
- 7. Стереохимия. Пространственное строение органических молекул. Пространственное взаимодействие несвязанных атомов и групп.
- 8. Понятие о конформации молекулы. Вращение вокруг связей: величины и симметрия потенциальных барьеров. Влияние эффектов сопряжения на стабильность конформеров.
- 9. Угловое напряжение и другие типы напряжения в циклических системах. Средние циклы и трансаннулярные взаимодействия. Инверсия циклов и азотсодержащих соединений. Номенклатура конформеров.

- 10. Связь конформации и реакционной способности. Стереоселективность и стереоспецифичность.
- 11. Пространственное строение этиленовых и диеновых систем. Номенклатура геометрических изомеров. Конформация диенов и триенов. Атропоизомерия.
- 12. Энантиомерия. Асимметрия и хиральность.
- 13. Номенклатура оптических антиподов. Неуглеродные атомы как центры хиральности.
- 14. Способы получения и разделения энантиомеров. Оптическая чистота и методы ее определения. Определение абсолютной и относительной конфигурации. Понятие о дисперсии оптического вращения и круговом дихроизме.
- 15. Классификация реакций по типу образования и разрыва связей в лимитирующей стадии, по типу реагента и по соотношению числа молекул реагентов и продуктов.
- 16. Теория переходного состояния. Термодинамические параметры активации. Кинетические уравнения основных типов реакций.
- 17. Межфазный катализ. Краун-эфиры катализаторы межфазного переноса. Понятие о супрамолекулярной химии.
- 18. Карбениевые ионы (карбокатионы). Строение карбокатионов. Основные типы реакций карбокатионов и области их синтетического использования.
- 19. Карбанионы и СН-кислоты. Влияние структурных факторов и эффектов среды на стабилизацию карбанионов. Основные реакции карбанионов, анионные перегруппировки.
- 20. Амбидентные и полидентные анионы.
- 21. Карбены. Методы генерации карбенов и использование их в органическом синтезе.
- 22. Нитрены, их генерация, строение и свойства.
- 23. Свободные радикалы и ион-радикалы. Методы генерирования радикалов. Типы стабильных свободных радикалов. Основы метода ЭПР.
- 24. Катион- и анион-радикалы. Методы генерирования и свойства. Основные реакции ион-радикалов. Комплексы с переносом заряда.
- 25. Механизмы S_N1 и S_N2 , смешанный ионно-парный механизм. Влияние структуры субстрата и полярности растворителя на скорости и механизм реакции.
- 26. Типичные механизмы нуклеофильного замещения у $\rm sp^2$ -гибридного атома углерода. Моно- и бимолекулярные процессы нуклеофильного замещения в ароматическом ряду.
- 27. Нуклеофильное замещение в нитропроизводных бензола. Комплексы *Мейзенхеймера*. Нуклеофильное замещение в ароматических гетероциклах. *Кине*-замещение.
- 28. Механизмы замещения S_{E1} , S_{E2} , S_{Ei} . Влияние структуры субстрата и эффектов среды на скорость и направление реакций.

- 29. Замещение у олефинового атома углерода и в ароматическом кольце. Генерирование электрофильных реагентов. Правила ориентации и их молекулярно-орбитальная интерпретация. Электрофильное замещение других групп, кроме водорода. *Ипсо*-замещение. Кинетические изотопные эффекты.
- 30. Механизмы гетеролитического элиминирования Е1 и Е2.
- 31. Электрофильное присоединение. Сильные и слабые электрофилы, механизм и стереохимия присоединения, регио- и стереоселективность реакций. Присоединение к сопряженным системам. Катионная полимеризация олефинов.
- 32. Нуклеофильное присоединение по кратным связям С=С. Механизм процесса. Влияние структуры нуклеофила и субстрата и эффектов среды на скорость и направление реакции. Реакция *Михаэля*. Анионная полимеризация олефинов.
- 33. Присоединение к карбонилсодержащим соединениям оснований, включая карбанионы, металлорганических соединений. Реакция *Анри*.
- 34. Енолизация альдегидов и кетонов. Метод ЯМР в его определении. Механизм этерификации кислот и получение ацеталей. Конденсации карбонильных соединений, карбоновых кислот и их производных.
- 35. Классификация перегруппировок: пинаколиновая и ретропинаколиновая, перегруппировка *Демьянова*. Перегруппировка *Вагнера—Мейервейна*. Перегруппировки с миграцией к атому азота (Гофмана, Курциуса, Бекмана). Реакция Байера—Виллигера.
- 36. Цепные радикальные реакции. Полимеризация, теломеризация, реакции автоокисления. Ингибиторы, инициаторы и промоторы цепных реакций.
- 37. Концепция сохранения орбитальной симметрии и правила *Вудворда—Гофмана*. Электроциклические реакции, сигматропные перегруппировки. Перициклические реакции [2+2] и [2+4]-циклоприсоединения. 1,3-Диполярное циклоприсоединение.
- 38. Прототропные и сигматропные перегруппировки. Правило *Корнблюма*. Кето-енольное равновесие. Нитросоединения и нитроновые кислоты, нитрозосоединения и оксимы. Металлотропия.
- 39. Производные фосфора, бора, лития, магния, олова в органическом синтезе.
- 40. Спектроскопия ЯМР, ЭПР, колебательная и электронная спектроскопия, масс- и хроматомасс-спектрометрия. Рентгеноструктурный анализ.
- 41. Газожидкостная и жидкостная хроматография, ионообменная хроматография, электрофорез.
- 42. Гидрирование непредельных углеводородов, электролиз солей карбоновых кислот (*Кольбе*), восстановление карбонильных соединений.

- 43. Реакции алканов. Галогенирование, сульфохлорирование. Селективность радикальных реакций и относительная стабильность алкильных радикалов. Термический и каталитический крекинг.
- 44. Методы синтеза и строение циклоалканов. Типы напряжения в циклоалканах, их подразделение на малые, средние и макроциклы. Конформационный анализ циклогексана, аксиальные и экваториальные связи.
- 45. Влияние конформационного положения функциональных групп на их реакционную способность в ряду производных циклогексана на примере реакций замещения, отщепления и окисления. Реакции расширения и сужения циклов при дезаминировании первичных аминов (Демьянов). Сужение цикла в реакции Фаворского (α -галогенциклоалканоны).
- 46. Элиминирование галогеноводородов из алкилгалогенидов, воды из спиртов. Синтез алкенов из четвертичных аммониевых солей (*Гофман*), N-окисей третичных аминов (*Коуп*). Реакция *Виттига* как региоспецифический метод синтеза алкенов.
- 47. Реакции алкенов. Электрофильное присоединение галогенов, галогеноводородов, воды. Процессы, сопутствующие AdE-реакциям: сопряженное присоединение, гидридные и алкильные миграции. Окисление алкенов до оксиранов (Прилежаев). Цис-гидроксилирование алкенов по Вагнеру (КМпО₄).
- 48. Радикальные реакции алкенов: присоединение бромистого водорода по *Харашу*, сероводорода и тиолов. Аллильное галогенирование по *Циглеру*.
- 49. Методы синтеза алкинов. Отщепление галогеноводородов. Усложнение углеродного скелета алкинов: реакции ацетиленидов натрия и меди, магнийорганических производных алкинов. Конденсация алкинов-1 с кетонами и альдегидами (Фаворский, Реппе).
- 50. Галогенирование, гидрогалогенирование, гидратация (Кучеров) алкинов. Ацетилен-алленовая изомеризация.
- 51. Методы синтеза 1,3-диенов.
- 52. Реакции 1,3-диенов, галогенирование и гидрогалогенирование, 1,2- и 1,4-присоединение. Реакция *Дильса—Альдера* с алкенами и алкинами, ее типы: карбо-реакция, гетеро-реакция. Диены и диенофилы. Катализ в реакции *Дильса—Альдера*. Стереохимия реакции.
- 53. Региоселективность [4+2]-циклоприсоединения в случае несимметричных диенов и диенофилов. Ретро-реакция *Дильса—Альдера*.
- 54. Методы синтеза одноатомных спиртов. Получение спиртов из алкенов, карбонильных соединений, сложных эфиров и карбоновых кислот.
- 55. Реакции одноатомных спиртов. Замещение гидроксильной группы в спиртах на галоген (под действием галогеноводородов, галогенидов фосфора и хлористого тионила). Дегидратация спиртов. Окисление первичных и вторичных спиртов.

- 56. Двухатомные спирты. Методы синтеза и реакции двухатомных спиртов. Окислительное расщепление 1,2-диолов (иодная кислота, тетраацетат свинца). Пинаколиновая перегруппировка.
- 57. Методы синтеза простых эфиров. Образование оксониевых солей, расщепление кислотами.
- 58. Краун-эфиры, их получение и применение в синтезе.
- 59. Оксираны. Способы получения. Раскрытие оксиранового цикла под действием электрофильных и нуклеофильных агентов.
- 60. Методы получения альдегидов и кетонов. Получение из спиртов, производных карбоновых кислот, алкенов (озонолиз), алкинов (гидроборирование), на основе металлорганических соединений. Ацилирование и формилирование аренов.
- 61. Реакции альдегидов и кетонов. Присоединение к альдегидам и кетонам воды, спиртов, тиолов. Обращение полярности С=О-группы. Получение бисульфитных производных и циангидринов. Взаимодействие альдегидов и кетонов с илидами фосфора (Виттиг) и серы. Взаимодействие альдегидов и кетонов с азотистыми основаниями. Перегруппировка Бекмана.
- 62. Енамины, их алкилирование и ацилирование. Альдольно-кротоновая конденсация альдегидов и кетонов как метод усложнения углеродного скелета. Конденсация альдегидов и кетонов с малоновым эфиром и другими соединениями с активной метиленовой группой (Кневенагель). Аминометилирование альдегидов и кетонов (Манних).
- 63. Бензоиновая конденсация. Конденсация альдегидов с нитроалканами (*Анри*). Восстановление альдегидов и кетонов до спиртов. Дезоксигенирование альдегидов и кетонов: реакции *Клемменсена* и *Кижнера—Вольфа*. Окисление альдегидов. Окисление кетонов надкислотами по *Байеру—Виллигеру*.
- 64. Методы получения α , β -непредельных альдегидов и кетонов и реакции 1,2- и 1,4- присоединения цианистого водорода, галогеноводородов. Эпоксидирование α , β -непредельных кетонов. Сопряженное присоединение енолятов и енаминов к α , β -непредельным альдегидам и кетонам (*Михаэль*).
- 65. Методы синтеза карбоновых кислот. Окисление первичных спиртов и альдегидов, алкенов, алкинов, алкилбензолов, гидролиз нитрилов и других производных карбоновых кислот, синтез на основе металлорганических соединений, синтезы на основе малонового эфира.
- 66. Реакции карбоновых кислот, синтез галогенангидридов, ангидридов, сложных эфиров, нитрилов, амидов. Кетены, их получение и свойства.
- 67. Реакции производных карбоновых кислот. Восстановление галогенангидридов до альдегидов по *Розенмунду* и комплексными гидридами металлов. Взаимодействие галогенангидридов с диазометаном (реакция *Арндта-Эйстерта*).
- 68. Малоновая кислота: синтезы с малоновым эфиром, реакция *Михаэля*, конденсации с альдегидами (*Кневенагель-Дебнер*). Сложноэфирная и ацилоиновая конденсации.

- 69. Особенности эфиров двухосновных кислот (образование карбоциклов) в этих реакциях. Сложные эфиры α-галогенокислот в реакциях *Реформатского*. Ацетоуксусный эфир и его использование в синтезе.
- 70. Методы синтеза и свойства α,β-непредельных карбоновых кислот. Дегидратация гидроксикислот, реакции *Кневенагеля*, *Виттига*, *Перкина* (синтез коричных кислот). Реакции присоединения по двойной связи. Бромо- и иодолактонизация α,β-непредельных карбоновых кислот.
- 71. Классификация реакций ароматического электрофильного замещения. Влияние заместителей в бензольном кольце на скорость и направление электрофильного замещения. Согласованная и несогласованная ориентация.
- 72. Нитрующие агенты. Механизм реакции нитрования. Нитрование бензола и его замещенных. Нитрование бифенила, нафталина, ароматических аминов и фенола. Восстановление нитрогруппы в различных условиях.
- 73. Галогенирующие агенты. Механизм галогенирования аренов и их производных.
- 74. Сульфирование. Сульфирующие агенты. Сульфирование фенола и нафталина. Превращение сульфогруппы.
- 75. Алкилирование аренов по Фриделю-Крафтсу. Алкилирующие агенты. Механизм реакции. Полиалкилирование. Побочные процессы: изомеризация алкилирующего агента и конечных продуктов.
- 76. Ацилирование аренов. Ацилирующие агенты. Механизм реакции. Региоселективность ацилирования. Особенности ацилирования фенолов, перегруппировка *Фриса*. Формилирование по *Гаттерману-Коху*, *Гаттерману* и *Вильсмейеру*.
- 77. Нитросоединения и амины. Алкилирование аммиака и аминов по *Гофману*, фталимида калия (*Габриэль*), восстановление азотсодержащих производных карбонильных соединений и карбоновых кислот, нитросоединений, алкилазидов. Перегруппировки *Гофмана* и *Курциуса*.
- 78. Пятичленные гетероциклы с одним гетероатомом. Фуран, пиррол, тиофен. Синтез из 1,4-дикарбонильных соединений (*Пааль—Кнорр*). Синтез пирролов по *Кнорру* и по *Ганчу*.
- 79. Реакции электрофильного замещения в пятичленных ароматических гетероциклах: нитрование, сульфирование, галогенирование, формилирование, ацилирование.
- 80. Индол. Синтез производных индола из фенилгидразина и кетонов (*Фишер*). Реакции электрофильного замещения в пиррольном кольце индола: нитрование, формилирование, галогенирование.
- 81. Шестичленные ароматические гетероциклы с одним гетероатомом. Пиридин и хинолин. Синтез производных пиридина по *Ганчу*. Синтез частично гидрированных производных

пиридина путем [4+2]-циклоприсоединения (гетеро-реакция *Дильса—Альдера*). Синтез хинолина и замещенных хинолинов из анилинов по *Скраупу* и *Дебнеру—Миллеру*.

- 82. Реакции пиридина и хинолина с алкилгалогенидами. Окисление и восстановление пиридина и хинолина. Реакции электрофильного замещения в пиридине и хинолине: нитрование, сульфирование, галогенирование. *N*-Оксиды пиридина и хинолина и их использование в реакции нитрования.
- 83. Нуклеофильное замещение атомов водорода в пиридине и хинолине в реакциях с амидом натрия (*Чичибабин*) и фениллитием. 2- и 4-Метилпиридины и хинолины как метиленовые компоненты в конденсациях с альдегидами.
- 84. Пиримидин, синтез и строение. Таутомерия в ряду азинов на примере производных пиримидина.
- 85. Нуклеофильные реакции в ряду пиримидина реакции замещения и рециклизации. Механизмы реакций нуклеофильного замещения в ряду гетероциклов $S_{N2}Ar$, $S_{N}H$, теле- и кине-замещение, $S_{N}ANRORC$.
- 86. Ароматичность и правило Хюккеля. Гетероароматические системы. π -избыточность и π -дефицитность.
- 87. π –Избыточные гетарены. Электрофильное замещение в ряду π –избыточных гетаренов.
- 88. Классификация и номенклатура гетероциклов.
- 89. Рециклизации с включением фрагмента нуклеофила. Перегруппировки Димрота, Коста-Сагитуллина.
- 90. π–Амфотерность азолов на примере пиразола и имидазола. Таутомерия имидазола и пиразола.

5 Образовательные технологии

В процессе обучения применяются следующие образовательные технологии:

- 1. Сопровождение лекций показом визуального материала.
- 2. Проведение лекций с использованием интерактивных методов обучения.

Учебно-методическое и информационное обеспечение дисциплины (модуля)

Учебно-методические и библиотечно-информационные ресурсы обеспечивают учебный процесс и гарантируют качественное освоение аспирантом образовательной программы. Университет располагает обширной библиотекой, включающей научно-экономическую

литературу, научные журналы и труды научно-практических конференций по основополагающим проблемам науки и практики управления.

7.1.Основная литература:

Ингольд К. Теоретические основы органической химии. М.: Мир, 1973.

Марч Дж. *Органическая химия*, Т. 1-4. М.: *Мир*, 1987.

Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. Ч. 1-4. М.: Бином, 2007.

Кери Ф., Сандберг Р. Углубленный курс органической химии. Кн. 1, 2. М.: Химия, 1981.

Сайкс П. Механизмы реакций в органической химии. Вводный курс. М.: Химия, 2000.

Минкин В.И., Симкин Б.Я., Миняев Р.М. *Теория строения молекул*. Ростов-на-Дону: *Феникс*, 1997.

Потапов В.М. Стереохимия. М.: Химия, 1988.

Органикум: Практикум по органической химии / Г. Беккер, В. Бергер и др. Т. 1, 2. М.: *Мир*, 1992.

Джоуль Дж., Миллс К. Химия гетероциклических соединений. Изд. "Мир", Москва, 2004

Юровская М.А., КуркинА.В. Основы органической химии. "Бином", Москва, 2010

Пожарский А. Ф. Теоретические основы химии гетероциклов. М., "Химия", 1985.

7.2.Дополнительная литература

Юровская М.А. Химия ароматических гетероциклических соединений. "Бином", Москва, Лаборатория знаний. 2015.

Титце Л., Айхер Т. Препаративная органическая химия. Реакции и синтезы в практикуме органической химии и научно-исследовательской лаборатории. М.: Мир, 1999.

Джилкрист Т.Л. Химия гетероциклических соединений. М.: Мир, 1996.

7.3. Интернет-ресурсы

Сайты химических факультетов ведущих российских, европейских и американских университетов.